

ASSURING AUTONOMY

Safety, Security and Autonomy: plus ça change plus c'est même chose?

Prof John McDermid OBE FREng

Overview

Safety, Security and Autonomy

- Assuring Autonomy International Programme
- Safety and Security
 - Concept
 - Analysis approaches a biased review
- Safety, Security and Autonomy
 - Additional challenges a tentative view
- Conclusions

Robotics & Autonomy

The Foundation's Review of RAS

- Published in October 2016
 - Key "white spaces" in assurance & regulation that need addressing to realise benefits of RAS
- Five-year York-led Programme
 - £10M from Foundation
 - £2M from York for management
 - A strong focus on 'demonstrators' and working 'bottom up'
 - Linked work, e.g. EU network

Foresight review of robotics and autonomous systems

Serving a safer world

LRF Review of RAS

Priority Research Areas

Suggested priority areas			
Openess and sharing	Assurance and certification	Security and resilience	Public trust, understanding and skills
Open data standards	Asset self certification	Cyber security of RAS	Ethical and trusted RAS frameworks
Open data sets	Assurance of RAS learning systems	Software system integrity	Assured skills for RAS
Shared curation of RAS knowledge			

Programme Activities

Scope

Four main strands of work

- Work on assurance and regulation in support of demonstrator projects (real-world prototypes or real deployments – use cases)
- More fundamental research, e.g. on dynamic risk, and assurance of artificial intelligence/deep learning
- Education and training, for professionals in RAS/AI and safety (senior level briefings to Master's level material)
- Support to the international community
- All contributing to or using a Body of Knowledge (BoK)

Demonstrators

Ongoing Demonstrators

- RECOLL (MCM, Italy, manufacturing)
 - Started 01/07/18
- TIGARS (Adelard, UK & Japan, autonomous vehicles)
 - Started 01/09/18
- SAM (Derby ICU, UK, healthcare)
 - Started 01/09/18
- Assistive Robotics (Bristol Robotics, UK, assistive)
 - Started 01/12/18
- SUCCESS (Mälardalen, Sweden, quarrying)
 - Started 01/12/18

Research Consolidation

Body of Knowledge

scope

Richard Hawkins 23rd November 2018

Proposed Structure and

Body of Knowledge

- Development of the BoK
 - Structured to address assurance and regulation challenges – for each
 - Objectives
 - Approaches to demonstration
 - Contextual information
 - Initial web-based version
 - Partially populated in January
 - More interactive version to be developed later in 2019

Safety and Security

Mobile Drilling Platform

- Impact from financial malware
 - Safety problem as a result of DoS

Safety and Security

Relationships?

- Cyber attacks can cause safety problems
 - But relationship much wider

Analysis Approaches

Based on Established Safety Methods

- HAZOP-based approaches (early 2000s)
 - Chemical plant HAZOP adapted to software, e.g. SHARD
 - Guideword based flow analysis (deviations)
 - Extensions to include cyber-security causes of deviations

STPA-SafeSec (2017)

- Leveson extended her System Theoretic Process Analysis (STPA) to include cyber-security (STPA-sec)
- Later work extended further, addressing perceived weaknesses in the approach
 - Essentially integrating safety and security

Early Life Cycle Methods

Cyber Risk Assessment Framework

Autonomy

All the same?

- Autonomy
- hose • The ability of a person to make his or the second decisions (or self-government, independente
 - Autonomous systems name the decisions, not the humans (but jragerital – robot vs kettle)
- Auton We not change concepts of safety and
 - Hazard, threat, vulnerability ... all the same
 - So methods such as CRAF, STPA-SafeSec can be applied

Autonomy

Challenges

- Classical safety and security builds in defences or barriers
 - To (detect and) mitigate risks
 - Often require redundancy or diversity for the defences
 - Other sources of, and means of processing, data
- Autonomy may reduce diversity/redundancy
 - Can we learn image analysis two different ways
 - Similar enough we can "match" objects but different enough there is a level of resilience?
 - May be more single points of failure

RAS Models

Model Underpinning BoK

- Model of systems
 - Sense
 - Understand
 - Decide
 - Act
- Development
 - Data management
 - Machine learning
 - Verification

Machine Learning Workflow

System Sensing Spoofing (non-malicious)

System Sensing

Adversarial Attacks (plausible?)

(a) Image

(c) Adversarial Example

Adversarial examples for image recognition with CNNs

System of Systems

Complex & varying attack surfaces

Control hands over to on-shore Captain, departs Pier 248

Navigates course southbound towards Pier 167

B

Successfully

Pier 167

moors alongside

Departs Pier then conducts a 360 degree manoeuvre, and returns to Pier 248

The Svitzer Hermod makes the historic journey along Copenhagen harbour

The world's first remote control commercial vessel

Key facts

Rolls-Royce and Svitzer demonstrate the world's first remote controlled commercial vessel
Test took place in Copenhagen harbour
The 28 metre Svitzer Hermod was controlled by a Captain from shore
It successfully demonstrated vessel navigation, situational awareness, remote control and
communications systems
Rolls-Royce Remote Operations Centre features state-of-the-art control
Combination of Radar, Lidar and camera technology ensures Captain's awareness of surroundings

The tech

On board sensors to give Captain full awareness of surroundings

Sensors covering Radar, Lidar, camera and audio

State-of-the-art Remote Operations Centre on shore

Rolls-Rolls Dynamic Positioning systems control position of the vessel via satellite

The test

400+ individual validations met

42 individual safety requirements met

Passed 61 mandatory cyber security tests

Completed 16 hours of remote control operation and overseen by Lloyd's Register

The vessel

28 metre tug Svitzer Hermod

Built in 2016

2 x MTU 16V4000 M63 diesel engines

Data Management

Choosing Data Sets

- Main training data
 - Conlimitations in the initial observation of the initial observation observation of the initial observation obs
 - Can limitations in training data Reduce vulnerabilities? Ca
- Augmentation datas
 - To "complete collected data, e.g. accident scenarios
 - Can augmentation data be chosen to trigger unsafe or insecure behaviour?
- Consider non-standard system development process, not covered by existing standards ...

System Development Choosing Data Sets

- Data types and roles in machine learning
 - All potential targets for adversarial activity
 - Potential direct security and indirect safety impacts

System Development

Threat Categories and Data Types

Forensics

How analyse incidents and Q

- 5 me • With a system of see nser
 - pe of analyzid • What in be anage data colecting under dynabi extreming ata, learning from conters ... mine learning P
- - What inform needs to be
 - ecisions be en luined (NB GDPR)?
- How ensure independent of developer?
 - Cf Tesla and Uber fatalities

Conclusions

Safety, Security and Autonomy

- Principle 0 for assuring autonomous systems
 - Apply standard good practice safety, security, etc.
- Initial bias that was all we need to do
 - But we do need an integrated approach such as CRAF
- Growing belief
 - Safety and security for autonomy are different
 - Work is needed on product, process and forensic issues
 - Another research strand to augment the Assuring Autonomy International Programme?
 - Collaboratively with Southampton, NCSC, ... ?

Funded by

